Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 7133, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504914

RESUMO

microRNAs (miRNAs) are crucial for normal development and physiology. To identify factors that might coordinate with miRNAs to regulate gene expression, we used 2'O-methylated oligonucleotides to precipitate Caenorhabditis elegans let-7, miR-58, and miR-2 miRNAs and the associated proteins. A total of 211 proteins were identified through mass-spectrometry analysis of miRNA co-precipitates, which included previously identified interactors of key miRNA pathway components. Gene ontology analysis of the identified interactors revealed an enrichment for RNA binding proteins, suggesting that we captured proteins that may be involved in mRNA lifecycle. To determine which miRNA interactors are important for miRNA activity, we used RNAi to deplete putative miRNA co-factors in animals with compromised miRNA activity and looked for alterations of the miRNA mutant phenotypes. Depletion of 25 of 39 tested genes modified the miRNA mutant phenotypes in three sensitized backgrounds. Modulators of miRNA phenotypes ranged from RNA binding proteins RBD-1 and CEY-1 to metabolic factors such as DLST-1 and ECH-5, among others. The observed functional interactions suggest widespread coordination of these proteins with miRNAs to ultimately regulate gene expression. This study provides a foundation for future investigations aimed at deciphering the molecular mechanisms of miRNA-mediated gene regulation.


Assuntos
Proteínas de Caenorhabditis elegans , MicroRNAs , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , MicroRNAs/metabolismo , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
Genetics ; 220(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34739048

RESUMO

The auxin-inducible degradation system in C. elegans allows for spatial and temporal control of protein degradation via heterologous expression of a single Arabidopsis thaliana F-box protein, transport inhibitor response 1 (AtTIR1). In this system, exogenous auxin (Indole-3-acetic acid; IAA) enhances the ability of AtTIR1 to function as a substrate recognition component that adapts engineered degron-tagged proteins to the endogenous C. elegans E3 ubiquitin ligases complex [SKR-1/2-CUL-1-F-box (SCF)], targeting them for degradation by the proteosome. While this system has been employed to dissect the developmental functions of many C. elegans proteins, we have found that several auxin-inducible degron (AID)-tagged proteins are constitutively degraded by AtTIR1 in the absence of auxin, leading to undesired loss-of-function phenotypes. In this manuscript, we adapt an orthogonal auxin derivative/mutant AtTIR1 pair [C. elegans AID version 2 (C.e.AIDv2)] that transforms the specificity of allosteric regulation of TIR1 from IAA to one that is dependent on an auxin derivative harboring a bulky aryl group (5-Ph-IAA). We find that a mutant AtTIR1(F79G) allele that alters the ligand-binding interface of TIR1 dramatically reduces ligand-independent degradation of multiple AID*-tagged proteins. In addition to solving the ectopic degradation problem for some AID-targets, the addition of 5-Ph-IAA to culture media of animals expressing AtTIR1(F79G) leads to more penetrant loss-of-function phenotypes for AID*-tagged proteins than those elicited by the AtTIR1-IAA pairing at similar auxin analog concentrations. The improved specificity and efficacy afforded by the mutant AtTIR1(F79G) allele expand the utility of the AID system and broaden the number of proteins that can be effectively targeted with it.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Caenorhabditis elegans , Proteínas F-Box , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Ácidos Indolacéticos/metabolismo
3.
Genetics ; 220(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34791245

RESUMO

In Caenorhabditis elegans, germline injection of Cas9 complexes is reliably used to achieve genome editing through homology-directed repair of Cas9-generated DNA breaks. To prevent Cas9 from targeting repaired DNA, additional blocking mutations are often incorporated into homologous repair templates. Cas9 can be blocked either by mutating the PAM sequence that is essential for Cas9 activity or by mutating the guide sequence that targets Cas9 to a specific genomic location. However, it is unclear how many nucleotides within the guide sequence should be mutated, since Cas9 can recognize "off-target" sequences that are imperfectly paired to its guide. In this study, we examined whether single-nucleotide substitutions within the guide sequence are sufficient to block Cas9 and allow for efficient genome editing. We show that a single mismatch within the guide sequence effectively blocks Cas9 and allows for recovery of edited animals. Surprisingly, we found that a low rate of edited animals can be recovered without introducing any blocking mutations, suggesting a temporal block to Cas9 activity in C. elegans. Furthermore, we show that the maternal genome of hermaphrodite animals is preferentially edited over the paternal genome. We demonstrate that maternally provided haplotypes can be selected using balancer chromosomes and propose a method of mutant isolation that greatly reduces screening efforts postinjection. Collectively, our findings expand the repertoire of genome editing strategies in C. elegans and demonstrate that extraneous blocking mutations are not required to recover edited animals when the desired mutation is located within the guide sequence.


Assuntos
Edição de Genes
4.
Wiley Interdiscip Rev RNA ; 12(3): e1627, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32954644

RESUMO

microRNAs (miRNAs) play a central role in the regulation of gene expression by targeting specific mRNAs for degradation or translational repression. Each miRNA is post-transcriptionally processed into a duplex comprising two strands. One of the two miRNA strands is selectively loaded into an Argonaute protein to form the miRNA-Induced Silencing Complex (miRISC) in a process referred to as miRNA strand selection. The other strand is ejected from the complex and is subject to degradation. The target gene specificity of miRISC is determined by sequence complementarity between the Argonaute-loaded miRNA strand and target mRNA. Each strand of the miRNA duplex has the capacity to be loaded into miRISC and possesses a unique seed sequence. Therefore, miRNA strand selection plays a defining role in dictating the specificity of miRISC toward its targets and provides a mechanism to alter gene expression in a switch-like fashion. Aberrant strand selection can lead to altered gene regulation by miRISC and is observed in several human diseases including cancer. Previous and emerging data shape the rules governing miRNA strand selection and shed light on how these rules can be circumvented in various physiological and pathological contexts. This article is categorized under: RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.


Assuntos
MicroRNAs , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Interferência de RNA , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo
5.
J Vis Exp ; (159)2020 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-32510481

RESUMO

Co-immunoprecipitation methods are frequently used to study protein-protein interactions. Confirmation of hypothesized protein-protein interactions or identification of new ones can provide invaluable information about the function of a protein of interest. Some of the traditional methods for extract preparation frequently require labor-intensive and time-consuming techniques. Here, a modified extract preparation protocol using a bead mill homogenizer and metal beads is described as a rapid alternative to traditional protein preparation methods. This extract preparation method is compatible with downstream co-immunoprecipitation studies. As an example, the method was used to successfully co-immunoprecipitate C. elegans microRNA Argonaute ALG-1 and two known ALG-1 interactors: AIN-1, and HRPK-1. This protocol includes descriptions of animal sample collection, extract preparation, extract clarification, and protein immunoprecipitation. The described protocol can be adapted to test for interactions between any two or more endogenous, endogenously tagged, or overexpressed C. elegans proteins in a variety of genetic backgrounds.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Imunoprecipitação/métodos , Animais , Núcleo Celular/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Extratos de Tecidos/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(38): E5271-80, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26351692

RESUMO

MicroRNAs are regulators of gene expression whose functions are critical for normal development and physiology. We have previously characterized mutations in a Caenorhabditis elegans microRNA-specific Argonaute ALG-1 (Argonaute-like gene) that are antimorphic [alg-1(anti)]. alg-1(anti) mutants have dramatically stronger microRNA-related phenotypes than animals with a complete loss of ALG-1. ALG-1(anti) miRISC (microRNA induced silencing complex) fails to undergo a functional transition from microRNA processing to target repression. To better understand this transition, we characterized the small RNA and protein populations associated with ALG-1(anti) complexes in vivo. We extensively characterized proteins associated with wild-type and mutant ALG-1 and found that the mutant ALG-1(anti) protein fails to interact with numerous miRISC cofactors, including proteins known to be necessary for target repression. In addition, alg-1(anti) mutants dramatically overaccumulated microRNA* (passenger) strands, and immunoprecipitated ALG-1(anti) complexes contained nonstoichiometric yields of mature microRNA and microRNA* strands, with some microRNA* strands present in the ALG-1(anti) Argonaute far in excess of the corresponding mature microRNAs. We show complex and microRNA-specific defects in microRNA strand selection and microRNA* strand disposal. For certain microRNAs (for example mir-58), microRNA guide strand selection by ALG-1(anti) appeared normal, but microRNA* strand release was inefficient. For other microRNAs (such as mir-2), both the microRNA and microRNA* strands were selected as guide by ALG-1(anti), indicating a defect in normal specificity of the strand choice. Our results suggest that wild-type ALG-1 complexes recognize structural features of particular microRNAs in the context of conducting the strand selection and microRNA* ejection steps of miRISC maturation.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/fisiologia , Animais , Sequência de Bases , Northern Blotting , Proteínas de Caenorhabditis elegans/genética , DNA Complementar/metabolismo , Biblioteca Gênica , Espectrometria de Massas , Dados de Sequência Molecular , Mutação , Proteômica , Proteínas de Ligação a RNA/genética , Termodinâmica
7.
PLoS Genet ; 10(4): e1004286, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24763381

RESUMO

microRNAs function in diverse developmental and physiological processes by regulating target gene expression at the post-transcriptional level. ALG-1 is one of two Caenorhabditis elegans Argonautes (ALG-1 and ALG-2) that together are essential for microRNA biogenesis and function. Here, we report the identification of novel antimorphic (anti) alleles of ALG-1 as suppressors of lin-28(lf) precocious developmental phenotypes. The alg-1(anti) mutations broadly impair the function of many microRNAs and cause dosage-dependent phenotypes that are more severe than the complete loss of ALG-1. ALG-1(anti) mutant proteins are competent for promoting Dicer cleavage of microRNA precursors and for associating with and stabilizing microRNAs. However, our results suggest that ALG-1(anti) proteins may sequester microRNAs in immature and functionally deficient microRNA Induced Silencing Complexes (miRISCs), and hence compete with ALG-2 for access to functional microRNAs. Immunoprecipitation experiments show that ALG-1(anti) proteins display an increased association with Dicer and a decreased association with AIN-1/GW182. These findings suggest that alg-1(anti) mutations impair the ability of ALG-1 miRISC to execute a transition from Dicer-associated microRNA processing to AIN-1/GW182 associated effector function, and indicate an active role for ALG/Argonaute in mediating this transition.


Assuntos
Proteínas Argonautas/genética , Proteínas de Transporte/genética , MicroRNAs/genética , Mutação/genética , Alelos , Sequência de Aminoácidos , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Sequência Conservada , Regulação da Expressão Gênica no Desenvolvimento/genética , Dados de Sequência Molecular , Proteínas Repressoras/genética , Alinhamento de Sequência
8.
Genetics ; 179(3): 1357-71, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18622031

RESUMO

Members of the Wnt family of secreted glycoproteins regulate many developmental processes, including cell migration. We and others have previously shown that the Wnts egl-20, cwn-1, and cwn-2 are required for cell migration and axon guidance. However, the roles in cell migration of all of the Caenorhabditis elegans Wnt genes and their candidate receptors have not been explored fully. We have extended our analysis to include all C. elegans Wnts and six candidate Wnt receptors: four Frizzleds, the sole Ryk family receptor LIN-18, and the Ror receptor tyrosine kinase CAM-1. We show that three of the Wnts, CWN-1, CWN-2, and EGL-20, play major roles in directing cell migrations and that all five Wnts direct specific cell migrations either by acting redundantly or by antagonizing each other's function. We report that all four Frizzleds function to direct Q-descendant cell migrations, but only a subset of the putative Wnt receptors function in directing migrations of other cells. Finally, we find striking differences between the phenotypes of the Wnt quintuple and Frizzled quadruple mutants.


Assuntos
Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Movimento Celular , Neurônios/citologia , Transdução de Sinais , Proteínas Wnt/metabolismo , Animais , Embrião não Mamífero/citologia , Receptores Frizzled/metabolismo , Ligação Proteica
9.
Dev Biol ; 289(1): 229-42, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16313898

RESUMO

Histone proteins play integral roles in chromatin structure and function. Histones are subject to several types of posttranslational modifications, including acetylation, which can produce transcriptional activation. The converse, histone deacetylation, is mediated by histone deacetylases (HDACs) and often is associated with transcriptional silencing. We identified a new mutation, cw2, in the Caenorhabditis elegans hda-1 gene, which encodes a histone deacetylase. Previous studies showed that a mutation in hda-1, e1795, or reduction of hda-1 RNA by RNAi causes defective vulval and gonadal development leading to sterility. The hda-1(cw2) mutation causes defective vulval development and reduced fertility, like hda-1(e1795), albeit with reduced severity. Unlike the previously reported hda-1 mutation, hda-1(cw2) mutants are viable as homozygotes, although many die as embryos or larvae, and are severely uncoordinated. Strikingly, in hda-1(cw2) mutants, axon pathfinding is defective; specific axons often appear to wander randomly or migrate in the wrong direction. In addition, the long range migrations of three neuron types and fasciculation of the ventral nerve cord are defective. Together, our studies define a new role for HDA-1 in nervous system development, and provide the first evidence for HDAC function in regulating neuronal axon guidance.


Assuntos
Axônios/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/crescimento & desenvolvimento , Movimento Celular , Histona Desacetilases/fisiologia , Sistema Nervoso/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/análise , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Movimento Celular/genética , Dosagem de Genes , Expressão Gênica , Histona Desacetilases/análise , Histona Desacetilases/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação de Sentido Incorreto
10.
Dev Biol ; 285(2): 447-61, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16109397

RESUMO

Members of the Frizzled family of integral membrane proteins are implicated in many developmental events, including specifying cell fate, orienting cell and planar polarity, and directing cell migration. Frizzleds function as cell surface receptors for secreted Wnt proteins. We report here the isolation of a mutation in cfz-2, a Caenorhabditis elegans Frizzled gene. Mutation of cfz-2 causes defective cell migration, disorganization of head neurons, and can cause ectopic axon outgrowth. Analysis of mosaic animals shows that CFZ-2 functions cell nonautonomously, but does not rule out an autonomous role. CFZ-2 is expressed primarily in the anterior of embryos and in several cells in the head of adults. Our analysis of interactions between CFZ-2 and other Wnt pathways reveals that three Wnts, CWN-1, CWN-2 and EGL-20, and a Frizzled, MOM-5, function redundantly with one another and with CFZ-2 for specific cell migrations. In contrast, CWN-1, CWN-2, EGL-20, CFZ-2, and MOM-5 antagonize one another for other migrations. Therefore, CFZ-2 functions by collaborating with and/or antagonizing other Wnt signaling pathways to regulate specific cell migrations.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Movimento Celular/fisiologia , Receptores Frizzled/metabolismo , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , Sequência de Aminoácidos , Análise de Variância , Animais , Axônios/fisiologia , Sequência de Bases , Proteínas de Caenorhabditis elegans/genética , Movimento Celular/genética , Mapeamento Cromossômico , Clonagem Molecular , Primers do DNA , Receptores Frizzled/genética , Perfilação da Expressão Gênica , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação/genética , Análise de Sequência de DNA , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...